Saturday 5 October 2013

Electricity is produced at a an electric power plant. Some fuel source, such as coal, oil, natural gas, or nuclear energy produces heat. The heat is used to boil water to create steam. The steam under high pressure is used to spin a turbine. The spinning turbine interacts with a system of magnets to produce electricity. The electricity is transmitted as moving electrons through a series of wires to homes and business.


This is a typical electric power plant located in Shawville, Pennsylvania.


Notice the large pile of coal on the left side of the plant.


Notice the three smokestacks, each one taller than the previous.


The tallest stack was built to cut down on the local air pollution. The sulfur oxides are emitted higher into the atmosphere. This has not proven to be a solution to the probelm.

 As a result the sulfur oxides now travel great distances before coming down in the form of acid rain.

Saturday 31 August 2013

Note on free current versus bound current

The electric current that arises in the simplest textbook situations would be classified as "free current"—for example, the current that passes through a wire or battery. In contrast, "bound current" arises in the context of bulk materials that can be magnetized and/or polarized. (All materials can to some extent.)

When a material is magnetized (for example, by placing it in an external magnetic field), the electrons remain bound to their respective atoms, but behave as if they were orbiting the nucleus in a particular direction, creating a microscopic current. When the currents from all these atoms are put together, they create the same effect as a macroscopic current, circulating perpetually around the magnetized object. This magnetization current JM is one contribution to "bound current".

The other source of bound current is bound charge. When an electric field is applied, the positive and negative bound charges can separate over atomic distances in polarizable materials, and when the bound charges move, the polarization changes, creating another contribution to the "bound current", the polarization current JP.


The total current density J due to free and bound charges is then:
with Jf the "free" or "conduction" current density.


All current is fundamentally the same, microscopically. Nevertheless, there are often practical reasons for wanting to treat bound current differently from free current. For example, the bound current usually originates over atomic dimensions, and one may wish to take advantage of a simpler theory intended for larger dimensions. The result is that the more microscopic Ampère's law, expressed in terms of B and the microscopic current (which includes free, magnetization and polarization currents), is sometimes put into the equivalent form below in terms of H and the free current only.

Ampère's original circuital law

It relates magnetic fields to electric currents that produce them. Using Ampere's law, one can determine the magnetic field associated with a given current or current associated with a given magnetic field, providing there is no time changing electric field present. In its historically original form, Ampère's circuital law relates the magnetic field to its electric current source. The law can be written in two forms, the "integral form" and the "differential form". The forms are equivalent, and related by the Kelvin–Stokes theorem. It can also be written in terms of either the B or H magnetic fields. Again, the two forms are equivalent (see the "proof" section below).


Ampère's circuital law is now known to be a correct law of physics in a magnetostatic situation: The system is static except possibly for continuous steady currents within closed loops. In all other cases the law is incorrect unless Maxwell's correction is included (see below).


An electric current produces a magnetic field.

Integral form

In SI units (cgs units are later), the "integral form" of the original Ampère's circuital law is a line integral of the magnetic field around some closed curve C (arbitrary but must be closed). The curve C in turn bounds both a surface S which the electric current passes through (again arbitrary but not closed—since no three-dimensional volume is enclosed by S), and encloses the current. The mathematical statement of the law is a relation between the total amount of magnetic field around some path (line integral) due to the current which passes through that enclosed path (surface integral). It can be written in a number of forms.

In terms of total current, which includes both free and bound current, the line integral of the magnetic B-field (in tesla, T) around closed curve C is proportional to the total current Ienc passing through a surface S (enclosed by C):


where J is the total current density (in ampere per square metre, Am−2).
Alternatively in terms of free current, the line integral of the magnetic H-field (in ampere per metre, Am−1) around closed curve C equals the free current If, enc through a surface S:



where Jf is the free current density only. Furthermore 
  • is the closed line integral around the closed curve C,
  • S denotes a 2d surface integral over S enclosed by C 
  • is the vector dot product,
  • dℓ is an infinitesimal element (a differential[disambiguation needed]) of the curve C (i.e. a vector with magnitude equal to the length of the infinitesimal line element, and direction given by the tangent to the curve C)
  • dS is the vector area of an infinitesimal element of surface S (that is, a vector with magnitude equal to the area of the infinitesimal surface element, and direction normal to surface S. The direction of the normal must correspond with the orientation of C by the right hand rule), see below for further explanation of the curve C and surface S.
The B and H fields are related by the constitutive equation


where μ0 is the magnetic constant.
There are a number of ambiguities in the above definitions that require clarification and a choice of convention.
First, three of these terms are associated with sign ambiguities: the line integral 
 could go around the loop in either direction (clockwise or counterclockwise); the vector area dS could point in either of the two directions normal to the surface; and Ienc is the net current passing through the surface S, meaning the current passing through in one direction, minus the current in the other direction—but either direction could be chosen as positive. These ambiguities are resolved by the right-hand rule: With the palm of the right-hand toward the area of integration, and the index-finger pointing along the direction of line-integration, the outstretched thumb points in the direction that must be chosen for the vector area dS. Also the current passing in the same direction as dS must be counted as positive. The right hand grip rule can also be used to determine the signs.
Second, there are infinitely many possible surfaces S that have the curve C as their border. (Imagine a soap film on a wire loop, which can be deformed by moving the wire). Which of those surfaces is to be chosen? If the loop does not lie in a single plane, for example, there is no one obvious choice. The answer is that it does not matter; it can be proven that any surface with boundary C can be chosen.

Differential form

By the Stokes' theorem, this equation can also be written in a "differential form". Again, this equation only applies in the case where the electric field is constant in time, meaning the currents are steady (time-independent, else the magnetic field would change with time); see below for the more general form. In SI units, the equation states for total current:

and for free current
where ∇× is the curl operator.

Ampère's circuital law

In classical electromagnetism, Ampère's circuital law, discovered by André-Marie Ampère in 1826, relates the integrated magnetic field around a closed loop to the electric current passing through the loop. James Clerk Maxwell derived it again using hydrodynamics in his 1861 paper On Physical Lines of Force and it is now one of the Maxwell equations, which form the basis of classical electromagnetism.


Cultural perception

In the 19th and early 20th century, electricity was not part of the everyday life of many people, even in the industrialised Western world. The popular culture of the time accordingly often depicts it as a mysterious, quasi-magical force that can slay the living, revive the dead or otherwise bend the laws of nature. This attitude began with the 1771 experiments of Luigi Galvani in which the legs of dead frogs were shown to twitch on application of animal electricity. "Revitalization" or resuscitation of apparently dead or drowned persons was reported in the medical literature shortly after Galvani's work. These results were known to Mary Shelley when she authored Frankenstein (819), although she does not name the method of revitalization of the monster. The revitalization of monsters with electricity later became a stock theme in horror films.

As the public familiarity with electricity as the lifeblood of the Second Industrial Revolution grew, its wielders were more often cast in a positive light, such as the workers who "finger death at their gloves' end as they piece and repiece the living wires" in Rudyard Kipling's 1907 poem Sons of Martha. Electrically powered vehicles of every sort featured large in adventure stories such as those of Jules Verne and the Tom Swift books. The masters of electricity, whether fictional or real—including scientists such as Thomas Edison, Charles Steinmetz or Nikola Tesla—were popularly conceived of as having wizard-like powers.

With electricity ceasing to be a novelty and becoming a necessity of everyday life in the later half of the 20th century, it required particular attention by popular culture only when it stops flowing, an event that usually signals disaster. The people who keep it flowing, such as the nameless hero of Jimmy Webb’s song "Wichita Lineman" (1968), are still often cast as heroic, wizard-like figures.

Physiological effects

A voltage applied to a human body causes an electric current through the tissues, and although the relationship is non-linear, the greater the voltage, the greater the current. The threshold for perception varies with the supply frequency and with the path of the current, but is about 0.1 mA to 1 mA for mains-frequency electricity, though a current as low as a microamp can be detected as an electrovibration effect under certain conditions. If the current is sufficiently high, it will cause muscle contraction, fibrillation of the heart, and tissue burns. The lack of any visible sign that a conductor is electrified makes electricity a particular hazard. The pain caused by an electric shock can be intense, leading electricity at times to be employed as a method of torture. Death caused by an electric shock is referred to as electrocution. Electrocution is still the means of judicial execution in some jurisdictions, though its use has become rarer in recent times.


Electrical phenomena in nature

Electricity is not a human invention, and may be observed in several forms in nature, a prominent manifestation of which is lightning. Many interactions familiar at the macroscopic level, such as touch, friction or chemical bonding, are due to interactions between electric fields on the atomic scale. The Earth's magnetic field is thought to arise from a natural dynamo of circulating currents in the planet's core. Certain crystals, such as quartz, or even sugar, generate a potential difference across their faces when subjected to external pressure. This phenomenon is known as piezoelectricity, from the Greek piezein (πιέζειν), meaning to press, and was discovered in 1880 by Pierre and Jacques Curie. The effect is reciprocal, and when a piezoelectric material is subjected to an electric field, a small change in physical dimensions takes place.

Some organisms, such as sharks, are able to detect and respond to changes in electric fields, an ability known as electroreception, while others, termed electrogenic, are able to generate voltages themselves to serve as a predatory or defensive weapon. The order Gymnotiformes, of which the best known example is the electric eel, detect or stun their prey via high voltages generated from modified muscle cells called electrocytes. All animals transmit information along their cell membranes with voltage pulses called action potentials, whose functions include communication by the nervous system between neurons and muscles. An electric shock stimulates this system, and causes muscles to contract. Action potentials are also responsible for coordinating activities in certain plants.

Thursday 29 August 2013

Uses:

The use of electricity gives a very convenient way to transfer energy, and because of this it has been adapted to a huge, and growing, number of uses. The invention of a practical incandescent light bulb in the 1870s led to lighting becoming one of the first publicly available applications of electrical power. Although electrification brought with it its own dangers, replacing the naked flames of gas lighting greatly reduced fire hazards within homes and factories. Public utilities were set up in many cities targeting the burgeoning market for electrical lighting.



The Joule heating effect employed in the light bulb also sees more direct use in electric heating. While this is versatile and controllable, it can be seen as wasteful, since most electrical generation has already required the production of heat at a power station. A number of countries, such as Denmark, have issued legislation restricting or banning the use of electric heating in new buildings. Electricity is however a highly practical energy source for refrigeration, with air conditioning representing a growing sector for electricity demand, the effects of which electricity utilities are increasingly obliged to accommodate.

Electricity is used within telecommunications, and indeed the electrical telegraph, demonstrated commercially in 1837 by Cooke and Wheatstone, was one of its earliest applications. With the construction of first intercontinental, and then transatlantic, telegraph systems in the 1860s, electricity had enabled communications in minutes across the globe. Optical fibre and satellite communication technology have taken a share of the market for communications systems, but electricity can be expected to remain an essential part of the process.

The effects of electromagnetism are most visibly employed in the electric motor, which provides a clean and efficient means of motive power. A stationary motor such as a winch is easily provided with a supply of power, but a motor that moves with its application, such as an electric vehicle, is obliged to either carry along a power source such as a battery, or to collect current from a sliding contact such as a pantograph, placing restrictions on its range or performance.


Electronic devices make use of the transistor, perhaps one of the most important inventions of the twentieth century, and a fundamental building block of all modern circuitry. A modern integrated circuit may contain several billion miniaturised transistors in a region only a few centimetres square.

Electricity is also used to fuel public transportation, including electric buses and trains.